

Datasheet Revision 1.6

Digital Automotive Pixel Link Receiver

The INAP125R24 is a receiver for the new Automotive **PIX**el (APIX) link for display and camera based point-to-point applications. The APIX link features an uni-directional pixel and full-duplex sideband data transmission over one single pair of shielded twisted pair (STP) copper cable. The upstream sideband can also be transmitted over a separate pair of wires to serve the requirements for automotive applications. In addition this wire may be used for power supply.

The INAP125R24 video interface supports color widths of 10, 12, 18 and 24bit. The interface can be configured individually to match all popular display and image sensor interfaces. The pixel interface features spread spectrum staggered outputs for lowest EMI.

The high-speed upstream outputs offer adjustable drive current to facilitate the adaptation to different link distances and cable qualities while offering maximum data integrity and full EMI compliance.

Packages:

• 64 pin QFN (Quad-Flat No-Leads)

INAP125R24

- Up to 1 GBit/s Downstream Link
- Up to 62.5 MBit/s Upstream Link
- Low EMI, Two- or Four-Wire Full Duplex Link
- Spread spectrum staggered pixel interface
- +15 m Distance with low profile STP cables
- 10/12/18/24 bit pixel Interface
- Configurable sampling edge for pixel data
- DC-balanced line coding to support AC coupling
- Upstream nominal drive current configurable
- · Optional equalizer functionality
- ISO10605 and IEC61000-4-2 compliant ESD protection
- Extended Temp. Range: -40 to +105°C
- AEC-Q100

Applications:

- Automotive Infotainment Displays
- Automotive Dashboard Displays
- · Head-Up Displays
- Rear-Seat Entertainment Systems
- Automotive Driver Assistance
- Inspection Systems

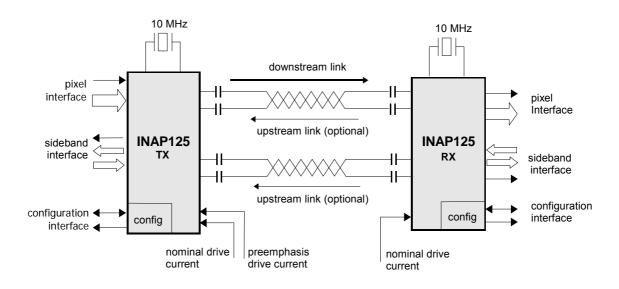


Figure 1: APIX system overview

Features:

Datasheet

1.0 Introduction

The APIX link transmits uncompressed pixel data with a sustained and resolution-independent link data rate of either 1 GBit/s or 500 MBit/s over one single pair of STP copper cable. In addition to the pixel data, bidirectional sideband control data can be transmitted over the same pair of wires.

The link supports distances of up to +15m (1 GBit/s mode) and up to +40m (500 MBit/s mode) depending on the output settings (current, pre-emphasis) and the cable properties.

Optimized for low EMI, the APIX link is dedicated for point-to-point applications within vehicles. The highly integrated architecture allows the implementation of video and audio links in applications like central information displays, dashboard and head-up displays, but also camera links as part of driver assistance systems requiring real-time digital video streams.

1.1 Transmission Channels

The APIX link provides three independent channels for data transfer

- the high speed downstream pixel channel
- · the downstream sideband channel
- the upstream sideband channel

The pixel channel and the downstream sideband channel are multiplexed and commonly transmitted over the downstream link.

The upstream sideband channel can either be established over the same pair of wires as the downstream link (embedded upstream channel, see Figure 1-1) or alternatively over a separate pair of wires (Figure 1-2). The configuration needs to be performed by the configuration vectors (see section 3.1).

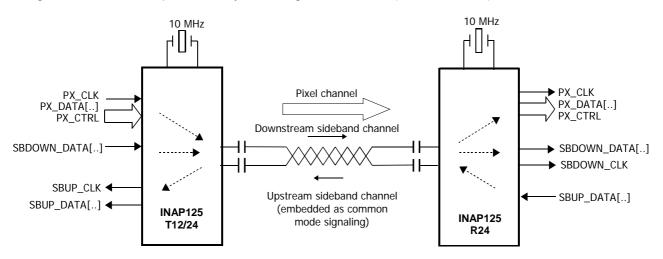


Figure 1-1: Single wire transmission channel configuration

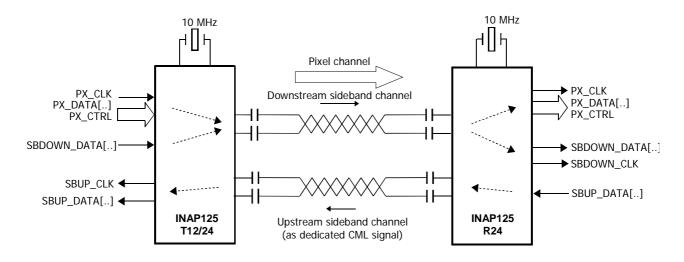


Figure 1-2: Two wire transmission channel configuration

1.2 Link Bandwidth

The bandwidth of the downstream link can be selected from these two modes:

- "full bandwidth" mode with a link data rate of 1 GBit/s, providing a net video data rate of 847MBit/s
- "half bandwidth" mode with a link data rate of 500 MBit/s, providing a net video data rate of 423.6MBit/s

The bandwidth also defines the maximum data rate possible for the sideband channels. The downstream sideband channel is transmitted in dedicated slots in the downstream link and therefore offers guaranteed low latency real-time characteristics. The maximum transmission rates is defined by the sampling frequency of the input pins as defined in section 2.3.2.

The upstream sideband channel is transmitted either as common mode signal on the same or as differential signal on a separate line (see Figure 1-2). The upstream channel data rate is configurable by configuration vectors as defined in section 3.1 and is not affected by the signalling method chosen for the upstream sideband channel.

2.0 Functional Description

2.1 Block Diagram

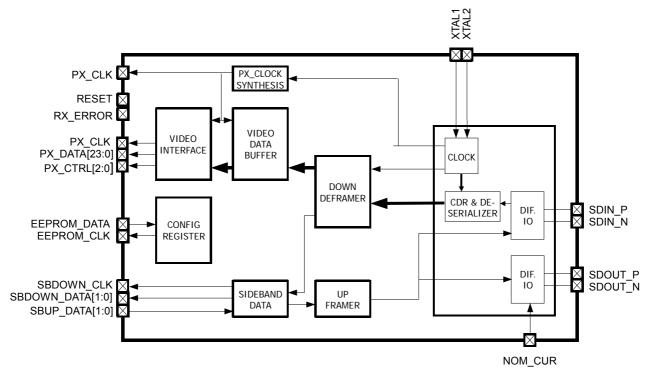


Figure 2-1: INAP125R24 Block Diagram

2.2 Serial Link Interfaces

2.2.1 Downstream Link Interface

The interface (SDIN+, SDIN-) of the downstream serial link (Tx -> Rx) is implemented with differential Current Mode Logic (CML).

2.2.2 Upstream Link Interface

As the upstream serial channel (from Rx to Tx) can alternatively be established over the downlink (embedded upstream channel) or a separate pair of STP cable, different signalling techniques will be employed. The selection of the mode is done by the configuration vectors (see section 3.1).

Option 1: Upstream and downstream channels share the same pair of STP cable. The upstream link employs common mode signalling technique.

Option 2: Upstream and downstream channels are transmitted over 2 separate pairs of STP cable. The additional upstream interface of the device (SDOUT+, SDOUT-) is realized with differential Current Mode Logic (CML).

Datasheet

2.3 Digital Interfaces

2.3.1 Pixel Data Interface

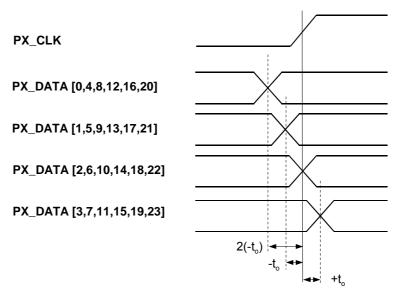
The pixel data interface is the output of the 24 bit parallel pixel data representing the video data. In addition 3 pixel control signals like HSYNC, VSYNC and DATA ENABLE can be transmitted. The interface provides the pixel data at PX_DATA[23:0] synchronous to the pixel clock at PX_CLK, which has a maximum of 62 Mhz as specified in Table 7-6. Data width and the configuration for the pixel control data are defined by configuration vectors (see section 3.1).

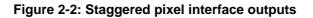
Channels		control signal transmit mode configuration of transmission of pixel control signals				
Downstream	PX_DATA Width	never	even pixels only	each pixel		
Bandwidth mode	10 bit	62.0 MHz	62.0 MHz	62.0 MHz		
1GBit/s	12 bit	62.0 MHz	62.0 MHz	56.4 MHz		
	18 bit	47.0 MHz	43.4 MHz	40.3 MHz		
	24 bit	35.3 MHz	33.2 MHz	31.3 MHz		
Bandwidth mode	10 bit	42.3 MHz	36.8 MHz	32.5 MHz		
500MBit/s	12 bit	35.2 MHz	31.3 MHz	28.2 MHz		
	18 bit	23.5 MHz	21.7 MHz	20.1 MHz		
	24 bit	17.6 MHz	16.6 MHz	15.6 MHz		

Table 2-1: Maximum pixel clock frequency for different PX_CTRL and data width settings

The parallel pixel interface supports pixel formats of 10, 12, 18 and 24 bit, in combination with 3 control signals. Pixel data and control signals are provided synchronously with the pixel clock. In order to reduce switching noise and with this EMI, the pixel interface outputs are summarized into 4 groups, with three of them being switched with different offsets to the pixel clock edge as shown in Figure 2-2. The offset time t_0 has a typical value of 100ps, meeting the requirements for setup and hold times for the interface (see section 4.1.1), not affecting the overall pixel interface operation.

Color Depth	INAP125R24
10 Bit	PX_DATA[9:0]
12 Bit	PX_DATA[11:0]
18 Bit	PX_DATA[17:0]
24 Bit	PX_DATA[23:0]


Table 2-2: Pixel data interface options



Control Function	INAP125R24
HSYNC / lineSync	PX_CTRL[0]
VSYNC / frameSync	PX_CTRL[1]
DATA ENABLE / valid	PX_CTRL[2]

 Table 2-3: Pixel control interface

t_o: staggering offset time

2.3.2 Sideband Channel Downstream Interface

The sideband data downstream interface provides the sideband data at two INAP125R24 output pins. The pins are provided synchronously with SBDOWN_CLK, which reflects the downstream sample clock at the INAP125T12/24 receiver devices. The maximum data rate is limited by the downstream serial line clock, which is defined by a configuration vector (see Table 3-1). Please see Table 2-4 for a complete list of available data rates.

Downstream speed	Maximum Output data rate (per pin)	Output pins INAP125R24
1 GBit/s	<13.89 MBit/s	SBDOWN DATA[1:0] ^a
500 MBit/s	<6.94 MBit/s	

Table 2-4: Downstream sideband data rate with INAP125T12/24 transmitter

a. INAP125T12 only supports SBDOWN_DATA[0]

2.3.3 Sideband Channel Upstream Interface

The sideband data upstream interface provides either one (INAP125R24) or two (INAP125R24) input pins to sample sideband data at SBUP_DATA. Both pins are sampled at a specific internal frequency and transmitted as 2 bit data packet. The sampling frequency depends on the serial line clock mode selected for the upstream link and in general is defined to be 1/3 of the upstream serial line clock. Due to the framing structure of the upstream link, SBUP_DATA is not sampled every 16th clock cycle as shown in Figure 2-3.

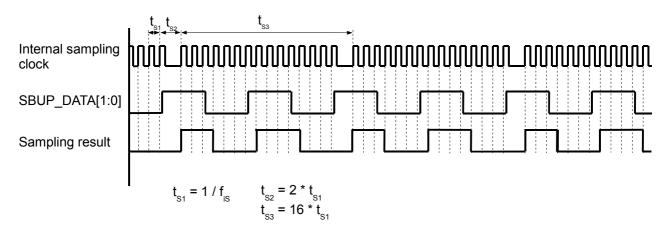


Figure 2-3: Asynchronous sampling of SBUP_DATA[1:0]

Upstream Serial Line Clock	internal sampling clock f _{is}	maximum sampling jitter	Input pins INAP125R24
62.5 MHz	20.83 MHz	104 ns	
41.61 MHz	13.89 MHz	152 ns	SBUP_DATA[1:0] ^a
31.25 MHz	10.41 MHz	200 ns	SBOP_DATA[1.0]
20.83 MHz	6.94 MHz	304 ns	

Table 2-5: Upstream sideband pin sampling frequency

a. INAP125T12 only supports SBUP_DATA[0]

2.4 Signal Description

For thermal and functional reasons the exposed die attach pad must be connected to GND.

Signal Name	Pin #	Туре	Description
PX_DATA[23:0]	35,34,33,64, 63,62,32,31, 18,17,16,15, 14,1,13,12, 11,10,9,8,7, 4,3,2	OUT	Pixel data output, provided with respect to the ris- ing or falling edge of PX_CLK.
PX_CLK	28	OUT	Pixel clock output
PX_CTRL[2:0]	19,20,21	OUT	Pixel control signals
SBDOWN_DATA[1:0]	36,30	OUT	Downstream sideband data
SBUP_DATA[1:0]	57,56	IN	Upstream sideband data
SBDOWN_CLK	60	OUT	Sideband channel downstream clock
RESET#	55	IN	Asynchronous reset (active low)
RX_ERROR	61	OUT	PX_CLK error, or down link sync error (active high)
EEPROM_DATA	24	IN/OUT	Configuration data
EEPROM_CLK	25	OUT	Configuration clock
XTAL_IN	52	IN	Oscillator input or reference clock input
XTAL_OUT	51	OUT	Oscillator output
PX_VCO_IN	38	IN	VCO for pixel clock generation - Input
PX_VCO_OUT	37	OUT	VCO for pixel clock generation - Output
NOM_CUR	46	PASSIV	Upstream channel: nominal current control
SDOUT+	47	OUT	CML serial data interface upstream. Interface to
SDOUT-	48	OUT	differential transmission line with Zdiff = 100 Ohm.
SDIN+-	40	IN	CML serial data interface downstream. Interface
SDIN-	41	IN	to differential transmission line with Zdiff = 100
VCO_TUNE	45	IN	VCO loop filter tuning voltage
PFD_OUT	44	OUT	Current output for VCO loop filter
VDD_VCO	43	PWR	Regulated power supply for VCO 1.8 V, 7 mA
VDD	22,59	PWR	1.8 V core supply, PI filter recommended
DVDD	5,26	PWR	3.3 V I/O supply, PI filter recommended

Table 2-6: INAP125R24 Pinout description, 64-pin QFN

Signal Name	Pin #	Туре	Description
VDDA	42	PWR	1.8 V analog supply, PI filter recommended
VDD_OSC	53	PWR	1.8 V oscillator supply, PI filter recommended
DVDD_OSC	49	PWR	3.3 V oscillator supply, PI filter recommended
VSS ^a	23,58	GND	Digital core ground
DVSS ^a	6,27,29	GND	Digital I/O ground
GNDA ^a	39	GND	Analog ground
VSS_OSC ^a	54	GND	Oscillator ground
DVSS_OSC ^a	50	GND	Oscillator I/O ground
Exposed Dia Attach Pad	-	GND	Connection to GND with multiple VIAs

Table 2-6: INAP125R24 Pinout description, 64-pin QFN

a. All VSS, DVSS and GND pins should be connected as common ground

3.0 Configuration, Reset, Power-Up and Error Detection

3.1 Configuration

The device parameters and settings are configured through a two-wire serial interface which is compatible to the MicroChip MicroWire[™] interface. After power-up or reset, the INAP125R24 expects a serial EEPROM at the interface EEPROM_DATA and EEPROM_CLK, to read in the configuration vectors. In case no EEPROM is used, the chip needs to be stimulated with the PROM_start and PROM_stop bytes as shown in Table 3-1. If the initialization fails the default values will be used. Please see section 3.1.2 for more details on the programming flow.

3.1.1 Configuration vectors

Address (hex)	Bit#	Parameter	Recommended value	Default value	Comment
00	7:0	PROM_start	10111101		PROM valid byte 0
01	0	reserved	1	1	
	1	pixel interface wake-up 1	0	0	0: force pixel interface to "0"until VCO is stable 1: pixel interface is always enabled
	2	equalizer	1	0	Serial line equalizer status 0: enabled 1: disabled
	3	dedicated upstream		1	0: disable 1: enable dedicated upstream link Note: in case bits 3 and 4 are set to ,1', the upstream channel is disabled
	4	embedded upstream		0	0: disable 1: enable embedded upstream link Note: in case bits 3 and 4 are set to ,1', the upstream channel is disabled
	5	reserved	0	0	
	6	bandwidth mode		1	0: 1 GBit/s mode 1: 500 MBit/s mode
	7	wait period after configuration	1	1	0: no delay 1: 50 ms delay after configuration to stabilize the PLL

Table 3-1: Configuration vectors

Address (hex)	Bit#	Parameter	Recommended value	Default value	Comment
02	1:0	pixel data width		00	selects the width of pixel data to be transmitted 00: 10 bit 01: 12 bit 10: 18 bit 11: 24 bit
	3:2	control signal transmit mode	11	11	transmission of pixel control signals 00: never 01: unused 10: on every second (even) pixels 11: on each pixel
	4	reserved	1	1	
	5	pixel clock active edge		1	0: falling edge 1: rising edge
	7:6	upstream serial link clock		01	See Table 3-2 and Table 3-3
03	0	reserved	0	0	
	1	pixel interface wake-up 2	0 a	0	PX_DATA and PX_CTRL start at the upper left corner 0: disable 1: enable
	2	pixel interface wake-up 3	0 ^a	0	PX_CLK starts at the upper left cor- ner 0: disable 1: enable
	3	fault tolerant transmission	1	1	tolerates single bit errors within the timing window 0: disable 1: enable
	7:4	RXError con- fig	0000	0000	
04	0	pll status	0	0	loss of PLL synchronization resets device 0: enable 1: disable
	7:1	reserved	1000110	0000110	

Table 3-1: Configuration vectors

Address (hex)	Bit#	Parameter	Recommended value	Default value	Comment
05	7:0	reserved	0000000	00000001	
06	7:0	reserved	0000000	00000000	
07	7:0	PROM_end	10011001		PROM valid byte 1

Table 3-1: Configuration vectors

a. The pixel interface wake-up function is an option for displays only. It requires a valid video timing with all three control signals

Bandwidth mode	Configuration Bit 7:6	Upstream serial line clock
1 Gbit/s	01	62.5 MHz
1 Gbit/s	10	41.67 MHz
1 Gbit/s	11	31.25 MHz

Table 3-2: Sideband upstream configuration for full bandwidth mode

Bandwidth mode	Configuration Bit 7:6	Upstream serial line clock
500 MBit/s	00	62.5 MHz
500 MBit/s	01	31.25 MHz
500 MBit/s	10	20.83 MHz

Table 3-3: Sideband upstream configuration for half bandwidth mode

Status	Configuration Byte 3, Bit 7:4	Comment
Video Link Status	0000	High indicates ,no valid video transmission
Pixel clock status	0001	Low indicates successful lock on pixel clock
Link established	0010	High if serial link established
CTRL2 detected	0011	Interface synchronized to video timing

Table 3-4: RX Error pin configuration

Status	Configuration Byte 3, Bit 7:4	Comment
(reserved)	0100:0110	
Pixel buffer error	0111	Indicates that pixel buffer is full or empty
(reserved)	1000:1111	

Table 3-4: RX Error pin configuration	3-4: RX Error pin config	uration
---------------------------------------	--------------------------	---------

3.1.2 Configuration procedure

The configuration of the INAP125R24 is performed through the MicroWireTM compatible interface. In general, the configuration may be performed by connecting a standard EEPROM or by serving the data from a micro controller or FPGA. The INAP125R24 expects the configuration vector data in 8-bit data format. In case of invalid PROM_start or PROM_end bytes, the devices uses the default values.

Please see Figure 3-1 for the general communication flow.

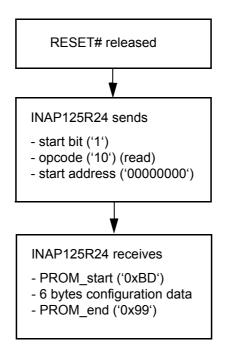
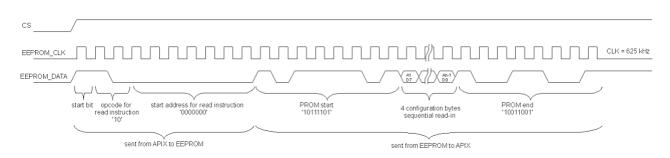



Figure 3-1: Configuration Flow

Figure 3-2: Configuration Interface Timing

Recommended EEPROMs are the 93L46A or 93L46C from Microchip Technology Inc. with selected word size of 8 bit. Since the INAP125R24 does not provide a dedicated CS signal, the EEPROM needs to support to send all data on just one rising edge of CS as shown in Figure 3-2. Please see Figure 3-3 for a typical connection circuitry for the EEPROM.

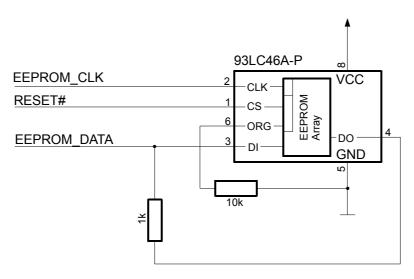


Figure 3-3: EEPROM connection circuitry

In order to connect the INAP125R24 configuration interface to the host controller, the host needs to be able to accept the interface clock from the APIX device.

Please note: The INAP125R24 is only able to respond to the PROM_Start and PROM_End command. No other Microwire commands supported.

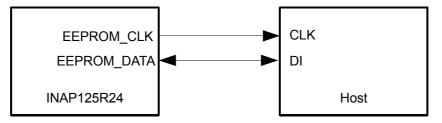


Figure 3-4: Host Connection diagram

3.2 Reset

The Reset pin triggers an asynchronous reset (active low) which sets all digital blocks of the INAP125R24 into a defined state. The configuration vectors are reset to the default values. The minimum low pulse width of the reset signal is 4 reference clock cycles.

During reset the serial output pins SDOUT-, SDOUT+ are held on VDDA level. PX_CLK, SBDOWN_DATA[1:0] and SBDOWN_CLK are at low level. EEPROM_DATA is high impedance.

The parallel pixel data interface PX_DATA[23:0] only applies valid data with pixel clock available at PX_CLK. During reset, PX_DATA[23:0] hold the last status which was present before reset.

3.3 Power-Up

3.3.1 Power-Up Sequence and Timing

The INAP125R24 tolerates the supply voltages to be ramped simultaneously. To avoid high IO currents, 1.8V supply voltages should ramp before 3.3V on power-up. On power-down, 3.3V should be powered down before 1.8V. On power-up all supply voltages have to rise steadily from GND level up to the VCC_{MIN} level without turn to negative direction. The ramping times must be within the limits as specified in Table 3-5. All 1.8V supplies have to be ramped up simultaneously starting from GND according Figure 3-5. Reset has to be held low until all supplies reached recommended operating conditions.

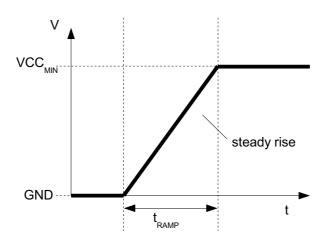


Figure 3-5: Steady voltage ramp-up

Parameter	Description	Min.	Тур.	Max.	Unit
t _{RAMP}	Supply Ramp Up Time for all supplies GND to VCC_{min}	0.05	1	10	ms

Table 3-5: Power supply ramp-up time

3.3.2 Power Supply Filtering

To achieve best transmission performance a noise level of less than 50mV on all analog and digital supply voltages VDD, VDDA, VDD_OSC, DVDD_OSC and DVDD is recommended. The loopfilter supply VDD_VCO requires lowest possible noise for best performance. See also section 6.0 for recommendations on power supply filtering.

3.4 Error detection

The INAP125R24 device includes an automatic error detection for the downstream transmission, which is indicated at pin RX_ERROR. The error status indicated by the pin is defined by a configuration vector as described in section 3.1.

4.0 Electrical Specification

4.1 Interface Timing

4.1.1 Pixel Interface

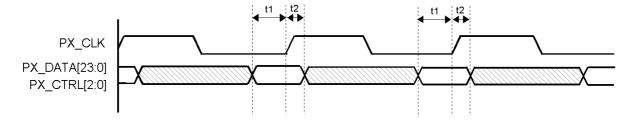


Figure 4-1: Pixel Interface timing at rising edge

Parameter	Description	Min.	Тур.	Max.	Unit
t ₁	Pixel data and control signal setup time to pixel clock	2.6	3	3.5	ns
t ₂	Pixel data and control signal hold time to pixel clock	1.8	2	2.5	ns

Table 4-1: Pixel interface timing at rising edge

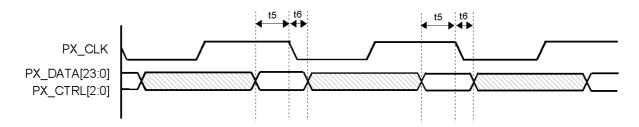


Figure 4-2: Pixel interface timing at falling edge

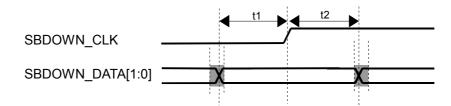

Parameter	Description	Min.	Тур.	Max.	Unit
t ₅	Pixel data and control signal setup time to pixel clock	2.3	2.4	3	ns
t ₆	Pixel data and control signal hold time to pixel clock	1.8	1.9	2	ns

Table 4-2: Pixel interface timing at falling edge

4.1.2 Sideband Interface Timing

Figure 4-3: Downstream sideband Interface Timing

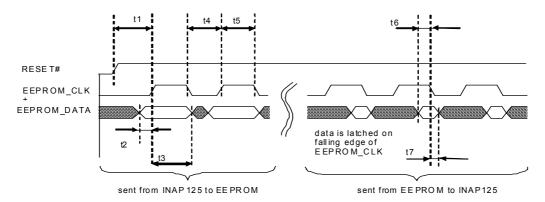

Parameter	Description	Min.	Тур.	Max.	Unit
t ₁	Sideband data setup time to sideband clock	-	6.5	-	ns
t ₂	Sideband data hold time to sideband clock	-	57	-	ns

Table 4-3: Downstream Sideband Interface Timing at 1GBit/s bandwidth mode

Parameter	Description	Min.	Тур.	Max.	Unit
t ₁	Sideband data setup time to sideband clock	-	13	-	ns
t ₂	Sideband data hold time to sideband clock	-	114	-	ns

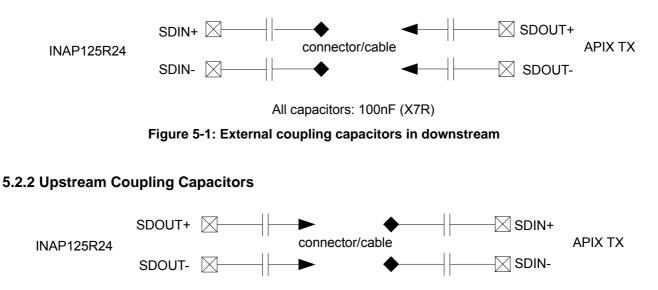
Table 4-4: Downstream Sideband Interface Timing at 500MBit/s bandwidth mode

4.1.3 Configuration interface timing

Parameter	Description	Min.	Тур.	Max.	Unit
t ₁	RESET high to first EEPROM clk	6xt _{OSC} ^a	650	-	ns
t ₂	setup time EEPROM_DATA to EEPROM_CLK	-	400	-	ns
t ₃	hold time EEPROM_DATA to EEPROM_CLK	-	1200	-	ns
t ₄	EEPROM_CLK low time	-	800	-	ns
t ₅	EEPROM_CLK high time	-	800	-	ns
t ₆	setup time EEPROM_DATA to EEPROM_CLK	-	20	-	ns
t ₇	hold time EEPROM_DATA to EEPROM_CLK	-	10	-	ns

Table 4-5: Configuration interface timing

a. t_{OSC} reflects one clock cycle as defined by the external reference clock, see section 5.2.4

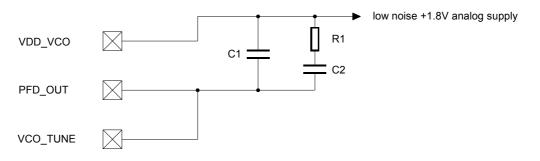

5.0 External circuits

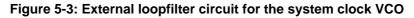
5.1 External Termination Resistors

There are no external termination resistors required – for both Upstream and Downstream the dedicated 50 Ohm termination resistors are integrated in the circuit.

5.2 External Coupling Capacitors

5.2.1 Downstream Coupling Capacitors


All capacitors: 100nF (X7R)


Figure 5-2: External coupling capacitors in upstream

5.2.3 External Loop Filter

5.2.3.1 System clock VCO

The INAP125R24 PLL circuit for the core system requires and external loopfilter which should be implemented as shown in Figure 5-3.

Symbol	Description	Value	Unit
C ₁	Capacitor C ₁	10	nF
C ₂	Capacitor C ₂	10	nF
R ₁	Resistor R ₁	100	kΩ

Table 5-1: Loop filter values for the system clock VCO

5.2.3.2 Pixel clock VCO

The INAP125R24 pixel clock recovery system requires and external loopfilter which should be implemented as shown in Figure 5-4.

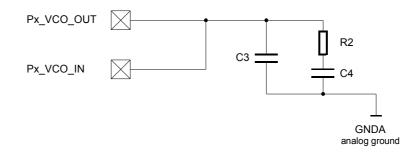


Figure 5-4: External Loop filter for the pixel clock VCO

Symbol	Description	Value ^a	Unit
C ₃	Capacitor C ₃	2.2	nF
C ₄	Capacitor C ₄	47	nF
R ₂	Resistor R ₂	1	kΩ

Table 5-2: Loop filter values for the pixel clock VCO

a. Typical values, may vary with specific application requirements

5.2.4 External Reference Clock

The INAP125R24 core clock frequency is generated by an internal PLL controlled by an external 10 MHz crystal. Figure 5-5 shows a typical crystal design required for the oscillator circuit. The values for C1, C2 and R1 need to be selected to match the oscillation requirements of the crystal Q1. Please see Table 5-3 for the external crystal.

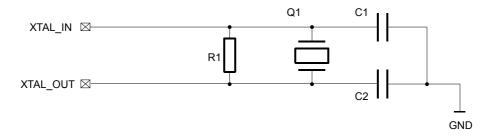


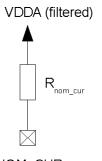
Figure 5-5: Crystal clock schematic example

Parameter	Symbol	Min	Тур	Max	Unit
Nominal Frequency	f _{OSC}		10		MHz
Frequency Tolerance	F _{tol}	-100		+100	ppm
Equivalent Series Resis- tance	ESR			80	Ohm
Drive Level			see Table 5-4		

Table 5-3: Crystal requirements

For resonance at the correct frequency, the crystal needs to be loaded with its specified load capacitance C_L , which is the value of capacitance used in conjunction with the oscillation unit. The INAP125R24 oscillator provides some of the load with internal capacitance which is specified with in the range of 10pF to 12.5pF. The remainder is generated by the external capacitors and tuning capacitors labeled C1 and C2.

The load capacitance CL can be calculated from CL = Cint + C1//C2. E.g. selecting C1 and C2 with 15pF, CL can be calculated to CL = 12.5pF + 7.5pF = 20pF.


The crystal needs to be able to withstand the power dissipation, produced by the INAP125R24. The power dissipation depends on the ESR of the crystal and is reflected by the maximum drive level of the crystal. Table 5-4 illustrates the power dissipation of the INAP125R24 and therefore the minimum drive level capabilities of the crystal at different crystal ESR levels.

Crystal ESR	INAP125R24 Power dissipation / Minimum crystal drive level	Unit
30	77	μW
50	121	μW
80	179	μW

Alternatively a stable 10 MHz clock signal (3.3V CMOS TTL) can be directly connected to XTAL_IN with XTAL_OUT left open. Clock oscillator signal must start after ramping of all supply voltages is completed.

5.2.5 Nominal Upstream Current Control

To achieve optimum transmission of the upstream link, the signal swing of the INAP125R24 device can be adjusted by means of an external resistor. When using the embedded upstream channel, the resistor controls the swing amplitude. When using the external upstream link, the resistor adjusts the nominal drive current.

NOM_CUR

Figure 5-6: Nominal current

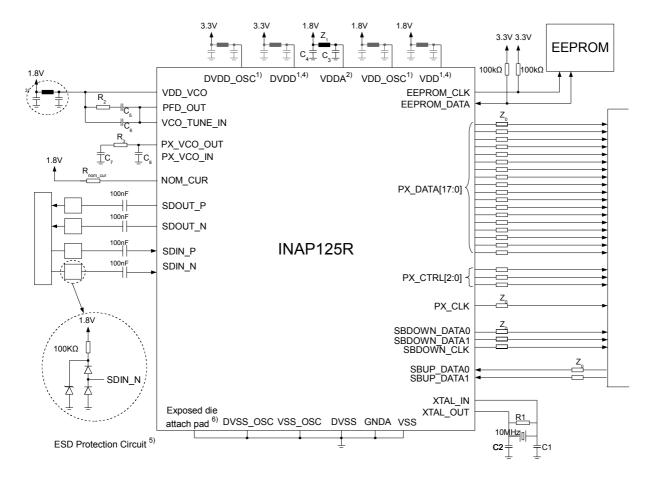

Symbol	Pin Description Min.		Max.	Unit	
R _{nom_cur}	NOM_CUR	resistor value (typ. add-on current)	500 (5mA)	10000 (0.5mA)	Ohm

Table 5-5: Recommended component values for nominal current

6.0 Application example

Z ₀ .	Trace impedance
R1,C1,C2:	Component values depend on selected crystal
Z1,C3,C4:	Filter design must be designed to eliminate oscillation on high dynamic currents with VDDA meeting specification requirements
R2,C5,C6:	Please check Table 5-1 for component values
R3,C7,C8:	Please check Table 5-2 for component values

- 1) Filter not required for functional reasons, but might be considered for EMI performance
- 2) Filter not required for functional reasons, but strongly recommended for EMI performance
- 3) Filter recommended for performance reasons
- 4) Filter recommended on all DVDD, VDD input pins, if required for EMI performance
- 5) ESD protection design implementation example, please check available circuitry
- 6) Connection by multiple VIAs directly underneath pad, to allow gas discharge during soldering

Figure 6-1: Application example

Datasheet

7.0 Electrical Characteristics

7.1 Absolute Maximum ratings

The absolute maximum ratings define values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The functional operation of the device at these or any other conditions beyond the recommended operating ratings is not guaranteed.

Parameter	Symbol	Min.	Max.	Units	Note
DC Supply Voltage	V _{DVDD} , V _{DVDD_} osc	-0.5	5.0	V	
Input Voltage	V _{VDD} , V _{VDDA} , V _{VDD_OSC}	-0.5	3.0	V	
I/O Current (DC or transient any pin)	I _D	-20	+20	mA	
Storage Temperature	T _{stg}	-55	+150	°C	
Max Soldering Temperature	T _{SLD} / T _{SLD}	-	260	°C	40 seconds maximum
ESD Protection IEC61000-4-2 Contact discharge ^a SDOUT+,SDOUT-,SDIN+,SDIN-		-8	+8	kV	R _D =330Ω, C _S =150pF
ESD Protection IEC61000-4-2 Air discharge ^a SDOUT+,SDOUT-,SDIN+,SDIN-		-12	+12	kV	R _D =330Ω, C _S =150pF
ESD Protection ISO10605 Contact discharge ^a SDOUT+,SDOUT-,SDIN+,SDIN-		-8	+8	kV	R _D =2kΩ, C _S =150pF
ESD Protection ISO10605 Air discharge ^a SDOUT+,SDOUT-,SDIN+,SDIN-		-20	+20	kV	R _D =2kΩ, C _S =150pF
ESD Protection HBM JEDEC JESD22/A114		-3	+3	kV	R _D =1.5kΩ, C _S =100pF
ESD Protection CDM EIA/JEDEC JESD22/C101		-1	+1	kV	

Table 7-1: Absolute maximum ratings

a. ESD Protection values measured without external protection circuitry. Higher protection grades possible with external circuitry as described in section 6.0.

7.2 Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Note
Digital Core supply	V _{VDD}	1.71	1.8	1.89	V	
Analog supply	V _{VDDA}	1.71	1.8	1.89	V	
Oscillator supply	V _{VDD_OSC}	1.71	1.8	1.89	V	
Digital IO Supply	V _{DVDD}	2.97	3.3	3.63	V	
Oscillator supply	V _{DVDD_OSC}	2.97	3.3	3.63	V	
CML Current	I _{CML}	0.8	-	24	mA	Internal Current Source
Ambient Temperature	T _a	-40	-	+105	°C	

Table 7-2: Recommended operating conditions

7.3 DC Characteristics

under recommended operating conditions. Unused inputs should be tied to ground.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
CMOS Input High Voltage	Vih	V _{DVDD} = 3.3 V	2.0	-	V _{DVDD}	V
CMOS Input Low Voltage	VIL	V _{DVDD} = 3.3 V	0	-	0.8	V
CMOS Input High Current	Ін	$V_{IN} = V_{DVDD}$	-10	-	10	μA
CMOS Input Low Current	IιL	$V_{IN} = 0 V$	-15	-	-77	μA
CMOS Output High Voltage	Vон	Iон = -4 mA	2.4	-	-	V
CMOS Output Low Voltage	Vol	lo∟ = 4 mA	-	-	0.4	V
CMOS Output High Current	Іон	V _{OH} = 0.9 x V _{DVDD}	-	-	4	mA
CMOS Output Low Current	lol	$V_{OL} = 0.1 \text{ x } V_{DVDD}$	-	-	-4	mA
Power Dissipation Rx	P _{max_Rx}	max data transmis- sion rate	-	180	-	mW

Table 7-3: DC characteristics

7.3.1 Supply Current

Parameter	min.	typ.	max.	Units
I vdd/vdd_osc	-	10	13	mA
l _{vdda/vdd_vco} a	-	71	95	mA
l dvdd/dvdd_osc	-	6	8	mA

Table 7-4: Supply Current

a. values at maximum serial drive current NOM_CUR, configurable as described in section

7.4 AC-Characteristics

Parameter	Min.	Тур.	Max.	Units
Input Capacitance, any pin	-	3	5	pF
Serial Transmission Gross Data Rate (Downstream)	500	-	1000	MBit/s
Serial Transmission Gross Data Rate (Upstream)	20.8	-	62.5	MBit/s
CMOS Output Rise / Fall Time (CL = 10 pF)	-	5	10	ns

Table 7-5: AC-Characteristics

7.5 Pixel Clock Range

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Pixel Clock Frequency	fріх	6	-	62	MHz	Maximum frequency depends on selected bit width

Table 7-6: Pixel Clock Range

8.0 Package Options / Ordering information

Device / Ordering Code	Description	Package	Minimum Order Quantity
INAP125R24	Rx w/1024 bit Interface + 2 bit Sideband	QFN64	260 pcs/tray
INAP125R24-R2	Rx w/1024 bit Interface + 2 bit Sideband	QFN64	2000 pcs/reel
INAP125R24-R4	Rx w/1024 bit Interface + 2 bit Sideband	QFN64	4000 pcs/reel

Table 8-1: Package Options

8.1 RoHS compliance

The devices INAP125R24 and INAP125R24 are released as RoHS compliant.

9.0 Soldering information

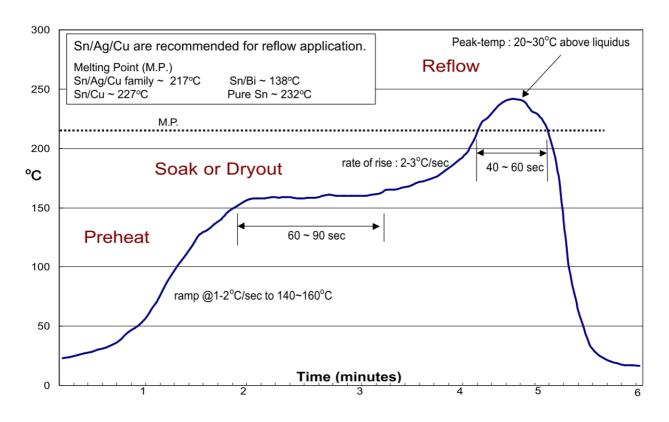


Figure 9-1: Reflow profile

10.0 Package information

10.1 Pinout diagrams

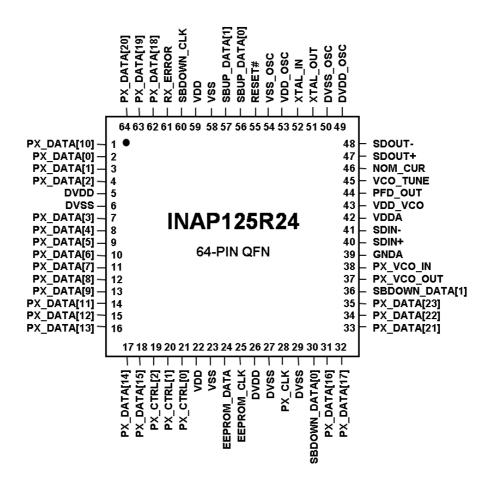


Figure 10-1: INAP125R24 pinout diagram

10.2 Package dimensions

all values in millimeter

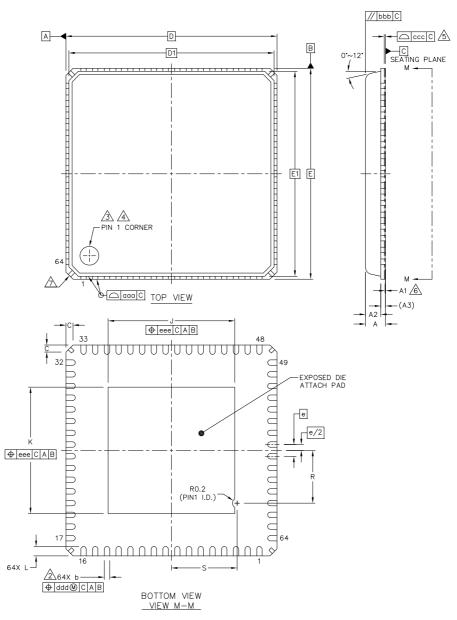


Figure 10-2: 64-pin QFN package dimensions

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		A	0.8	0.85	0.9	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS	A2	0.65		0.69		
L/F THICKNESS		A3		0.203 REF	-	
LEAD WIDTH		b	0.18	0.23	0.28	
CHAMFER		С	0.24		0.6	
X X		D		9 BS	С	
BODY SIZE	Y	E		9 BS	С	
MOLD CAP	Х	D1		8.75 B	SC	
MOLD CAP	Y	E1		8.75 B	SC	
LEAD PITCH		e	0.5 BSC			
EP SIZE	Х	J	5.3	5.4	5.5	
EP SIZE	Y	к	5.3	5.4	5.5	
LEAD LENGTH		L	0.3	0.4	0.5	
		R	2.15	2.25	2.35	
		S	2.7	2.8	2.9	
PACKAGE EDGE TOL	ERANCE	aaa		0.1		
MOLD FLATNESS		bbb	0.08			
COPLANARITY		ccc		0.05		
LEAD OFFSET		ddd	0.1			
EXPOSED PAD OFFSET		eee		0.1		

NOTES

- 1. DIE THICKNESS ALLLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM)
- \bigtriangleup dimension applies to plated terminal and is measured between 0.2 and 0.25mm from terminal tip.
- THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- A EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- APPLIED ONLY TO TERMINALS.

A EXACT SHAPE OF EACH CORNER IS OPTIONAL.

Figure 10-3: 64-pin QFN package dimensions

11.0 Revision History

Revision	Date	Changes
1.0	February 2008	Released Datasheet
1.1	December 2008	 Separated Transmitter and Receiver Datasheet Various updates on general description and formatting Renamed Pin SWING to pin NOM_CUR throughout the document Added separate block diagrams for R12 and R24 Updated Section "Pixel Data Interface" at page 5 Updated Section "Sideband Channel Upstream Interface" at page 7 Updated Table 2-6, "INAP125R12 Pinout description, 52-pin QFN," on page 8 Updated Table 2-6, "INAP125R24 Pinout description, 64-pin QFN," on page 8 Updated Section "Configuration vectors" at page 10 Added Table 3-4, "RX Error pin configuration," on page 12 Updated Section "Application example" at page 24 Updated Section "Electrical Characteristics" at page 25 Added Section "Soldering information" at page 28
1.2	February 2009	 Updated V_{ESDCDM} to 1000V in Table 7-1, "Absolute maximum ratings," on page 25 Corrected Default value of "Upstream serial line clock" in Table 3-1, "Configuration vectors," on page 10
1.3	June 2009	 Added ESD protection values for ISO10605 and IEC61000-4-2 in Table 7-1, "Absolute maximum ratings," on page 25 Added Figure 2-2, "Staggered pixel interface outputs" on page 6
1.4	December 2011	 Updated reference to Table 2-4 in Section "Sideband Channel Downstream Interface" at page 6 Updated Table 2-6, "INAP125R12 Pinout description, 52-pin QFN," on page 8, changed SDOUT- to pin# 39 Updated Section "Reset" at page 15 Updated Section "Application example" at page 24 Updated Section "Soldering information" at page 28
1.5	November 2012	 Updated Section "Reset" at page 15 Updated Section "Power-Up Sequence and Timing" at page 15 Updated Section "External Reference Clock" at page 22 Updated Section "64-pin QFN" at page 32
1.6	January 2014	Removed package version INAP125R12

Table 11-1: Revision History

Inova Semiconductors GmbH Grafinger Str. 26 D-81671 Munich / Germany

Phone: +49 (0)89 / 45 74 75 - 60 Fax: +49 (0)89 / 45 74 75 - 88

Email: info@inova-semiconductors.de

URL: http://www.inova-semiconductors.com

is a registered trademark of Inova Semiconductors GmbH

All other trademarks or registered trademarks are the property of their respective holders.

Inova Semiconductors GmbH does not assume any liability arising out of the applications or use of the product described herein; nor does it convey any license under its patents, copyright rights or any rights of others.

Inova Semiconductors products are not designed, intended or authorized for use as components in systems to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. The information contained in this document is believed to be current and accurate as of the publication date. Inova Semiconductors GmbH reserves the right to make changes at any time in order to improve reliability, function or performance to supply the best product possible.

Inova Semiconductors GmbH assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

© Inova Semiconductors 2012